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Abstract 
 

Vortices forming near the slag-steel interface in the mold can entrap inclusions and cause defects 

in continuous casting of steel slabs. Lab experiments employing a 1/3
rd 

scale water model were 

performed to quantify the effects of stopper rod asymmetry on vortex formation. Three stopper-

rod placements (aligned, front-misaligned and left-misaligned) were considered. Vortex 

formation was visualized with a high speed camera by placing sesame-seed tracer on the surface, 

which enables counting the number and detecting the location of vortices with time. Impeller 

flow probes were adopted to measure velocity profiles near the surface. Misaligning the stopper-

rod placement induces asymmetric flow, resulting in asymmetric surface velocity, velocity 

variations, and turbulent kinetic energy. These factors influence vortex frequency and location 

among four zones near the SEN. Most vortices form at the left regions beside the SEN with a 

left-misaligned stopper-rod. Vortices form more preferentially at outside regions with a front-

misaligned stopper-rod. 

 

Introduction 
 

Continuous casting is used to manufacture over 90% of steel in the world so there is great 

incentive to understand and optimize the process to minimize energy consumption and defects. 

Most defects in the rolled product are slivers caused by inclusions being trapped in the 

solidifying shell in the mold.  These inclusions come from entrained slag due to excessive 

surface velocity or vortexing [1,2], alumina particles from the tundish, or reoxidation and 

clogging inside the nozzle. Because steel quality depends greatly on turbulent flow in the mold, 

many efforts are made to optimize nozzle geometry and operation to achieve an optimal and 

stable mold flow pattern. Asymmetric flow in the mold is one of the main phenomena attributed 

with causing inclusion entrapment [3-5]. Steel flow rate into mold is usually controlled by either 

a stopper rod or slide-gate system. Flow from slide-gate nozzles is inherently asymmetric and 

produces either strong swirl or different flow on the right and left sides of the mold, depending 

upon the orientation of slide-gate. Stopper-rod control is gaining popularity because it offers 

symmetric flow, assuming it is aligned. The effect of stopper-rod misalignment is the subject of 

this study. The stopper rod could be misaligned by many causes such as: accidental faulty 

placement; buoyancy forces from the difference of density between light stopper-rod ceramic 
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and heavy steel; deformation of the stopper-rod supporting beam by radiant heat from the steel; 

and drag force from steel flow across the bottom of the tundish.  

 

This work investigates the effect of stopper-rod misalignment on steel flow in the mold. 

Specifically, the effect of both front-back and left-right stopper misalignment on surface velocity 

and vortex formation is measured using water model experiments. Many previous successful 

studies of mold fluid flow have been done using water models [3-8].  The current study applies 

water model experiments to quantify the effect of stopper-rod misalignment on both asymmetric 

flow and asymmetric vortex formation.  

 

Experimental Apparatus and Procedure 

 
Experiments were performed using a 1/3

rd
 scale water model, shown in Figure 1. The model 

consists of a tundish, stopper-rod, Submerged Entry Nozzle (SEN), and mold. Vertical 

movement of the stopper-rod controls the water flow rate from the tundish through the SEN into 

the mold via changing the size of the annular gap between the stopper end and the bottom of the 

tundish where it curves into the SEN. Water exits holes in the bottom of the mold to a holding 

water bath and is pumped continuously back up to the tundish.  The mold has straight walls, so 

the effects of the solidifying shell are neglected, but this should have negligible effect on the 

surface behavior for this thick-slab caster model. Single-phase flow was adopted, so the possible 

effects of argon gas-bubble injection were not studied. The nozzle has typically bifurcated, 35-

degree down-angled rectangular ports, with further details given elsewhere [9]. Table I provides 

details of the casting conditions, nozzle and mold dimensions of this 1/3
rd

 water model. Three 

different cases of stopper-rod location were studied as shown in Figure 2:  

1) “aligned”, where the stopper is carefully centered above the SEN with an average minimum 

annular gap of 1.92mm,   

2) “2-mm front misaligned”, where the stopper displaced towards the inside radius wide-face to 

give annular gaps of 0.29mm minimum (front) and 3.56mm maximum (back) and  

3) “2mm-left misaligned”, with misalignment towards the left narrow face by this same amount 

 

 
Figure 1. Schematic of 1/3

rd
 scale water model 
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Table I. Experimental conditions with nozzle and mold dimensions 

Water flow rate 34.4 LPM 

Casting speed 0.917 m/min 

Nozzle 

Bottom type Well bottom 

Port angle 35 degree 

Port area 23.3 mm(width) x 26.7 mm(height) 

Bore diameter(inner/outer) 25 mm/43 mm 

Mold 

Width 500 mm 

Thickness 75 mm 

Length 1200 mm 

Stopper-rod location Aligned(Center), 2mm misaligned(Front and Left) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Top view showing location of stopper-rods in : (a) aligned, (b) 2mm front misal

igned and (c) 2mm left misaligned cases 

 

Velocity measurements were performed using two impeller-type probes located at 150mm from 

the narrow faces and 15mm down from the free-surface to record instantaneous velocity signals 

for 2000sec, as shown in Figure 3. To aid visualization, sesame seeds were used as tracer 

particles and vortex phenomena were recorded with a high speed camera. After recording, 

vortices were counted in four regions near the SEN, as shown in Figure 4. The number of 

vortices in each region was divided by the time interval to calculate the local formation 

frequency.  
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Figure 3. Position of impeller velocity probes in a mold 
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Figure 4. Mold regions where vortices are counted (top view) 

 

Experimental Results and Discussion 

 
Flow in the mold exhibits a classic double-roll pattern with free surface flow from the narrow 

faces towards the SEN.  Instantaneous surface velocity signals were analyzed to see the effect of 

stopper-rod misalignment on surface flow. Figure 5 shows instantaneous velocity histories with 

different stopper-rod locations at the two probe positions. Based upon these instantaneous 

signals, mean surface velocities and turbulent kinetic energy were calculated and given in Table 

II. Horizontal velocity towards SEN in aligned and front misaligned cases is quite symmetric on 

right and left sides. Significant difference between velocities on right and left is seen in the left-

misalignment case. Turbulent kinetic energy is symmetric in all cases. The difference in mean 

velocity is important because it clearly causes vortex formation. Greater differences in mean 

velocity cause more vortices.   
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(c) 

Figure 5. Instantaneous surface velocity measured in (a) aligned, (b) 2mm front misaligne

d and (3) 2mm left misaligned stopper-rod cases 
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Table II. Comparison of averaged velocity magnitude and turbulent kinetic energy 

 

Left side Right side 

Avg. velocity 

magnitude 

(m/sec) 

Turbulent  

kinetic energy 

(x10
-04

 m
2
/sec

2
) 

Avg. velocity  

magnitude 

(m/sec) 

Turbulent  

kinetic energy 

(x10
-04

 m
2
/sec

2
) 

Aligned 0.098 4.72 0.103 5.30 

Misaligned 
Front 0.105 5.52 0.096 5.07 

Left 0.084 4.04 0.111 4.88 

 

To quantify how often the right side velocity towards the SEN is faster than the left side, 

(asymmetric fraction), the number of data points recorded by the 2 probes in 2000s were divided 

according to which side was faster and given in Table III.  For the left-misaligned case, this 

asymmetric fraction was bigger on the right side, which also had higher average variation 

(difference between velocities) and maximum variation. Furthermore, the magnitude of the 

variations correlates closely with a difference in vortex frequency. The aligned and front-

misaligned cases show random variations, which are due to turbulence. 

 

Table III. Comparison of asymmetric fraction, average variation and maximum variation 

 
Position of stopper-

rod 

Left side > Right 

side 

Left side < Right 

side 

Speed Frequency  

# of data points in 2000s  

(fraction, %) 

Aligned 878 (44.0%) 1122 (56.0%) 

Misaligned 
Front 1175 (58.5%) 825 (41.5%) 

Left 365 (18.5%) 1635 (81.5%) 

Average variation 

(m/sec) 

Aligned 0.024 0.029 

Misaligned 
Front 0.031 0.022 

Left 0.017 0.037 

Maximum variation 

(m/sec) 

Aligned 0.071 0.093 

Misaligned 
Front 0.091 0.087 

Left 0.066 0.113 

 

Almost all vortices form within 60mm from the mold center in the four regions defined in Figure 

4. Vortices at 1
st
 and 3

rd
 region rotate counter-clockwise and at 2

nd
 and 4

th
 region rotate 

clockwise, as shown in Figure 6(a) and (b). Some vortices penetrate deep near the nozzle port 

and entrap seeds from the surface into the jet leaving the nozzle port, as shown in Figure 6(c). 

After entering the jet, the entrapped seeds flow with the jet towards the narrow faces.  
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(b) 

Figure 6. Visualized vortex formation (a) top view, (b) schematic and (c) front view 
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The frequency of occurrence of vortices at the back (1
st
 and 2

nd
) regions were added and 

compared with the vortex frequency at the front (3
rd

 and 4
th

) regions in Fig. 7(a) and Table IV to 

see the effect of front-back asymmetric flow.  As expected, significant asymmetry is observed in 

the front misaligned case between the inside (front) and outside (back) radii. Similarly, the 

vortex formation frequencies at the left (1
st
 and 4

th
) regions were added and compared with the 

vortex frequency at the right (2
nd

 and 3
rd

) regions in Fig. 7(b) and Table V to see the effect of 

right-left asymmetric flow.  As expected, significant left-right vortex asymmetry is observed in 

the left misaligned case.  Twice as many vortices are observed on the left side for the left 

misalignment case, relative to other cases.  These vortices are caused by the velocity difference 

between the left and right side, which causes flow through the gap between the SEN and the 

mold, and vortex shedding on the downstream side.  Even with perfect alignment, 3 vortices per 

minute are observed total, which matches the total for front misalignment.  These are due to 

random velocity variations caused by turbulence.   
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Figure 7. Vortex frequency comparing (a) inside and outside, (b) left and right sides 

 

Table IV. Comparison of vortex frequency between inside and outside 

Vortex frequency(#/min) Aligned 
Misaligned 

Front Left 

Outside region 1.64 1.72 1.92 

Inside region 1.40 1.28 2.08 

Difference 0.24 0.44 0.16 

Total 3.04 3.00 4.00 

 

Table V. Comparison of vortex frequency between left region and right region 

Vortex frequency(#/min) Left region Right region Difference Total 

Aligned 1.48 1.56 0.08 3.04 

Misaligned 
Front 1.56 1.44 0.12 3.00 

Left 2.84 1.16 1.68 4.00 

 

Conclusions 
 

1. Minor misalignment of the stopper-rod induces significant mean flow asymmetry in the mold 

and in turn causes significant increase in the incidence of vortices. 
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2. Most of the vortices form in four regions close to the SEN in all cases. 

3. Instantaneous velocity asymmetries due to turbulence cause vortices even in the aligned 

stopper rod case, though their frequency is low. Velocities on right and left are ~symmetric. 

4. Left misalignment causes strong mean flow from right to left on the surface thus forming more 

vortices on the left side of SEN. 

5. Front misalignment seems to cause front-back asymmetry in the velocity with more vortices 

forming in the outside region. 

6. Velocity asymmetry on the free surface correlates well with vortex formation, showing that 

the difference in velocity flowing past the SEN is responsible for vortices. 
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